1,351 research outputs found

    System and Decision Sciences at IIASA 1973-1980

    Get PDF
    This report contains a brief history of the past achievements of the System and Decision Sciences Area at IIASA, and a summary of its current and future research directions. There is a comprehensive list of the scientific staff of the Area since 1973, together with a list of their publications; abstracts of the most recent reports and biographies of the scholars working in the Area in 1980 are also included

    Ensemble dependence in the Random transverse-field Ising chain

    Get PDF
    In a disordered system one can either consider a microcanonical ensemble, where there is a precise constraint on the random variables, or a canonical ensemble where the variables are chosen according to a distribution without constraints. We address the question as to whether critical exponents in these two cases can differ through a detailed study of the random transverse-field Ising chain. We find that the exponents are the same in both ensembles, though some critical amplitudes vanish in the microcanonical ensemble for correlations which span the whole system and are particularly sensitive to the constraint. This can \textit{appear} as a different exponent. We expect that this apparent dependence of exponents on ensemble is related to the integrability of the model, and would not occur in non-integrable models.Comment: 8 pages, 12 figure

    Asymmetric interference between sex and emotion in face perception

    Get PDF
    Previous research with speeded-response interference tasks modeled on the Garner paradigm has demonstrated that task-irrelevant variations in either emotional expression or facial speech do not interfere with identity judgments, but irrelevant variations in identity do interfere with expression and facial speech judgments. Sex, like identity, is a relatively invariant aspect of faces. Drawing on a recent model of face processing according to which invariant and changeable aspects of faces are represented in separate neurological systems, we predicted asymmetric interference between sex and emotion classification. The results of Experiment 1, in which the Garner paradigm was employed, confirmed this prediction: Emotion classifications were influenced by the sex of the faces, but sex classifications remained relatively unaffected by facial expression. A second experiment, in which the difficulty of the tasks was equated, corroborated these findings, indicating that differences in processing speed cannot account for the asymmetric relationship between facial emotion and sex processing. A third experiment revealed the same pattern of asymmetric interference through the use of a variant of the Simon paradigm. To the extent that Garner interference and Simon interference indicate interactions at perceptual and response-selection stages of processing, respectively, a challenge for face processing models is to show how the same asymmetric pattern of interference could occur at these different stages. The implications of these findings for the functional independence of the different components of face processing are discussed

    Continuous Melting of a "Partially Pinned" Two-Dimensional Vortex Lattice in a Square Array of Pinning Centers

    Get PDF
    The structure and equilibrium properties of a two-dimensional system of superconducting vortices in a periodic pinning potential with square symmetry are studied numerically. For a range of the strength of the pinning potential, the low-temperature crystalline state exhibits only one of the two basic periodicities (in the xx- and yy-directions) of the pinning potential. This ``partially pinned'' solid undergoes a continuous melting transition to a weakly modulated liquid as the temperature is increased. A spin model, constructed using symmetry arguments, is shown to reproduce the critical behavior at this transition.Comment: 5 pages, 4 figure

    Drivers of the Distribution of Fisher Effort at Lake Alaotra, Madagascar

    Get PDF
    Understanding how fishers make decisions is important for improving management of fisheries. There is debate about the extent to which small-scale fishers follow an ideal free distribution (IFD) – distributing their fishing effort efficiently according to resource availability, rather than being influenced by social factors or personal preference. Using detailed data from 1,800 fisher catches and from semi-structured interviews with over 700 fishers at Lake Alaotra, the largest inland fishery in Madagascar, we showed that fishers generally conformed to the IFD. However, there were differences in catch:effort relationships between fishers using different gear types as well as other revealing deviations from the predictions of IFD. Fishers report routine as the primary determinant of their choice of fishing location, explaining why they do not quickly respond to changes in catch at a site. Understanding the influences on fishers’ spatial behaviour will allow better estimates of costs of fishing policies on resource users, and help predict their likely responses. This information can inform management strategies to minimise the negative impacts of interventions, increasing local support and compliance with rules

    Quantifying the short-term costs of conservation interventions for fishers at Lake Alaotra, Madagascar

    Get PDF
    Artisanal fisheries are a key source of food and income for millions of people, but if poorly managed, fishing can have declining returns as well as impacts on biodiversity. Management interventions such as spatial and temporal closures can improve fishery sustainability and reduce environmental degradation, but may carry substantial short-term costs for fishers. The Lake Alaotra wetland in Madagascar supports a commercially important artisanal fishery and provides habitat for a Critically Endangered primate and other endemic wildlife of conservation importance. Using detailed data from more than 1,600 fisher catches, we used linear mixed effects models to explore and quantify relationships between catch weight, effort, and spatial and temporal restrictions to identify drivers of fisher behaviour and quantify the potential effect of fishing restrictions on catch. We found that restricted area interventions and fishery closures would generate direct short-term costs through reduced catch and income, and these costs vary between groups of fishers using different gear. Our results show that conservation interventions can have uneven impacts on local people with different fishing strategies. This information can be used to formulate management strategies that minimise the adverse impacts of interventions, increase local support and compliance, and therefore maximise conservation effectiveness

    Griffiths-McCoy Singularities in the Random Transverse-Field Ising Spin Chain

    Full text link
    We consider the paramagnetic phase of the random transverse-field Ising spin chain and study the dynamical properties by numerical methods and scaling considerations. We extend our previous work [Phys. Rev. B 57, 11404 (1998)] to new quantities, such as the non-linear susceptibility, higher excitations and the energy-density autocorrelation function. We show that in the Griffiths phase all the above quantities exhibit power-law singularities and the corresponding critical exponents, which vary with the distance from the critical point, can be related to the dynamical exponent z, the latter being the positive root of [(J/h)^{1/z}]_av=1. Particularly, whereas the average spin autocorrelation function in imaginary time decays as [G]_av(t)~t^{-1/z}, the average energy-density autocorrelations decay with another exponent as [G^e]_av(t)~t^{-2-1/z}.Comment: 8 pages RevTeX, 8 eps-figures include

    Dynamic Scaling in Diluted Systems Phase Transitions: Deactivation trough Thermal Dilution

    Full text link
    Activated scaling is confirmed to hold in transverse field induced phase transitions of randomly diluted Ising systems. Quantum Monte Carlo calculations have been made not just at the percolation threshold but well bellow and above it including the Griffiths-McCoy phase. A novel deactivation phenomena in the Griffiths-McCoy phase is observed using a thermal (in contrast to random) dilution of the system.Comment: 4 pages, 4 figures, RevTe

    Random antiferromagnetic quantum spin chains: Exact results from scaling of rare regions

    Full text link
    We study XY and dimerized XX spin-1/2 chains with random exchange couplings by analytical and numerical methods and scaling considerations. We extend previous investigations to dynamical properties, to surface quantities and operator profiles, and give a detailed analysis of the Griffiths phase. We present a phenomenological scaling theory of average quantities based on the scaling properties of rare regions, in which the distribution of the couplings follows a surviving random walk character. Using this theory we have obtained the complete set of critical decay exponents of the random XY and XX models, both in the volume and at the surface. The scaling results are confronted with numerical calculations based on a mapping to free fermions, which then lead to an exact correspondence with directed walks. The numerically calculated critical operator profiles on large finite systems (L<=512) are found to follow conformal predictions with the decay exponents of the phenomenological scaling theory. Dynamical correlations in the critical state are in average logarithmically slow and their distribution show multi-scaling character. In the Griffiths phase, which is an extended part of the off-critical region average autocorrelations have a power-law form with a non-universal decay exponent, which is analytically calculated. We note on extensions of our work to the random antiferromagnetic XXZ chain and to higher dimensions.Comment: 19 pages RevTeX, eps-figures include

    Ground state of the random-bond spin-1 Heisenberg chain

    Full text link
    Stochastic series expansion quantum Monte Carlo is used to study the ground state of the antiferromagnetic spin-1 Heisenberg chain with bond disorder. Typical spin- and string-correlations functions behave in accordance with real-space renormalization group predictions for the random-singlet phase. The average string-correlation function decays algebraically with an exponent of -0.378(6), in very good agreement with the prediction of (35)/20.382-(3-\sqrt{5})/2\simeq -0.382, while the average spin-correlation function is found to decay with an exponent of about -1, quite different from the expected value of -2. By implementing the concept of directed loops for the spin-1 chain we show that autocorrelation times can be reduced by up to two orders of magnitude.Comment: 9 pages, 10 figure
    corecore